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INTEGRAL FORMULAS FOR SUBMANIFOLDS
AND THEIR APPLICATIONS

BANG-YEN CHEN & KENTARO YANO

Various integral formulas for hypersurfaces have been established and applied
to the study of closed hypersurfaces with constant mean curvature. For the
literature, see [12]. Integral formulas for submanifolds of arbitrary codimensions
have been obtained by Chen [4], [5], [131, Katsurada [7], [8], [9], K6jy6 [8],
Nagai [9], Okumura [15], Tani [16] and Yano [5], [10], [111, [13], [15], [16].
In the present paper, we first obtain the most general integral formulas for
closed submanifolds in an m-dimensional euclidean space, and then apply those
formulas to obtain some characterizations of spherical submanifolds.

1. Preliminaries’

Let M~ be an n-dimensional manifold with an immersion x: M®» — E™ of M"
into a euclidean space E™ of dimension m. Let F(M") and F(E™) be respec-
tively the bundles of orthonormal frames of M™ and E™. Let B be the set of
elements b = (p,e, ---,€,,€,.,, - +,€,) such that (p,e, ---,e,) e F(M™)
and (x(p), e,, - - -, e,) € F(E™) whose orientation is coherent with that of E™,
by identifying e; with dx(e;),i = 1, - - -, n. Define %: B — F(E™) by %(b) =
(X(P), TR em)-

Throughout this paper, we shall agree, unless otherwise stated, on the indices
of the following ranges:

1<ij,---<n;1<4,B,.--<myn+1<r,s,--- <m.
The structure equations of E™ are given by
dx = Jwle, , de, = Zo ges ,
(1) doy = Swp N\ @y,  dolpy = oo N wgs
w{AB + wlBA = 0 ’

where o/, o, are differential 1-forms on F(E™). Let w,, 0,5 be the induced
1-forms on B from o/, o}z by the mapping X. Then we have
Communicated November 18, 1970.

1 Manifolds, mappings, functions, . . . are assumed to be differentiable and of class C-=,
and we shall restrict ourselves only to connected submanifolds of dimension n>1.
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(2) 0, =0, 0y = 2A,504 , Apy = Aggs -
From (2) we can define the mean curvature vector H by

(3) . H = (l/n)ZAriier .

H is a well-defined normal vector, and its length is called the mean curvature.
For each unit normal vector ¢ = X cos 6,e,, the second fundamental form
A, = (4;,(e)) at e is a linear transformation and is given by

A () = Fcos §,4,,e, , i=1,.--,n.

If N is a nonzero normal vector, then the second fundamental form at N is
defined as the second fundamental form at the unit direction of N. The princi-
pal curvatures at e are defined as the eigenvalues of the second fundamental
form A, at e. Furthermore, the pth mean curvature M,(e) at e is given by the
pth elementary symmetric function, i.e.,

(4) (n)Ms@) = S, - &y
where k,, - - -, k,, are the principal curvatures at ¢, and (;) =n!/lpl(n—p)!l.
If all the principal curvatures at e are the same, i.e., k, = - .. = k,, every-

where, then M™ is said to be umbilical with respect to e. If the mean curvature
vector H # 0 everywhere and M” is umbilical with respect to H, then M" is
called a pseudo-umbilical submanifold.

2. Some integral formulas

Let [ - - - 1 denote the combined operation of exterior product and
—_—
m — 1 terms
vector product, and ( , ) the combined operation of exterior product and scalar
product in E™. For simple cases we have

[el7 tT ‘7éA; ° '7em] = (_1)m+AeA ’
(’U, [vn o '>v7n—1]) == ('_ l)m—l det (’U, Vyy v ‘>vm—1) ’
(5) [dX7"’?dX7den+17"‘;den+1>en+27"'7em]
n—i i

= n(—1)™*" e, M(e, )dV ,

where » denotes the omitted term, dV = o, A - - - A w, the volume element of
M=, and X the position vector field of M™ in E™ with respect to the origin of
E™,
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The position vector field X can be decomposed into two parts:
(6) X=X +X,,

where X, is tangent to x(M™), and X, normal to x(M"). Let e be a unit normal
vector field over M”, and € a unit normal vector field perpendicular to e and
in the direction of X, — (X, e)e, i.e.,

(7) X, =X, ee+ (X, &e.

Throughout this paper, we always choose e, - - -, e, in the principal direc-
tions with respect to e. Thus, if we denote the principal curvatures at e by &,
.-, k,, then we have )

wi,n+1:ktwi’ l=1>"',"-

Define n functions Fy(e), i =1, --.,n, by
_ (=9 & i}
( 8) Fi(e) = —h'—(X‘e)Zkh' : 'kji—lAJiJi(e) ?

where the summation is taken over all distinct j, ---,j; = 1,---,n.

Suppose that the unit normal vector field e is parallel in the normal bundle,
i.e., by the definition, de is tangent to x(M") everywhere. Then, by using (5),
(6) and choosing e,,, = e and e, ,, = & everywhere, we have

dX,ldX,...,dX,de, ---,de,e, ., ---,e,))
n—i i—1

= (dX,[dX, -..,dX,de, ---,de,e,.., -+, €n])
‘ n—i i—1

+ (_l)n_l(X, [dX, . ',dX!des : ',de,en+2’ v '7em])

n—1 i
(9) + (=D 5 (X, [dX, - -, dX, de, - -, de,
$=n+2 ——— —— e

n—i i—1
T S deg,e .1, -, e.l)
= (=D""*nl(M,_(e) + (X-e)M(e)dV
+(-D)"(X,[dX, ---,dX,de, - - ~,d§, PN A S ) I

e e
n—i i—1

and
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[dX’ e ‘:ande’ * "adeaen+ladéaen+3’ " 'aem]

n—i i—1

= Z @y, A A Djnoy A @nil,dn—it1 VANRIEERVAN D1, dp -1 AN @ny2,ip

s s ir > €srs Cnsir €10 €nisy -+ * 5 €]
(10) = (=D Tk K@ N N N Ny,
N Onipgless - r€h,_€niis €y lnis oo s el
= (=D Xk, oo kg Ay @y N o N oy,
Lessr 1 €501 Cnitr nigy 5 €m]
=(n—DN=1)mrrisy Sk, ook Ay @)edV .
By (8), (9) and (10) we thus get

d(Xa [dX, “'aandea "‘adeaen+1a "'aem])
n_i i1

= (D" inl(M,_ (&) + (X-OMye) + FeDdV , i=1,---,n.

Hence we know that F,e) are well-defined functions defined on the whole
manifold M™. By integrating both sides of the above equation and applying
Stokes’ theorem, we have

Proposition 2.1. Let x: M™ — E™ be an immersion of an oriented closed
manifold M* into E™. If e is a unit normal vector field over M™ and is parallel
in the normal bundle, then

an f(Mi_l(e) + XM (e)dV = — fFi(e)dV , i=1,.--,n,
M7 Mn

where M (e) dentoe the ith mean curvature at e.

In particular, we have

Theorem 2.2. Let x: M®» — E™ be an immersion of an oriented closed
manifold M™ into E™. If e is a unit normal vector field parallel in the normal
bundle, and F.(e) = O for some i, 1 < i < n, then

(12) fMi_l(e)dV + f(X-e)Mi(e)dV ~0.

Remark 2.1. If the codimension m — n = 1, then the assumption F,(e¢) = 0
in Theorem 2.2 are automatically satisfied. In this case, the integral formulas
(12) are called the Minkowski formulas [6].

Remark 2.2, If the codimension is greater than 1, then in order to get some
generalized Minkowski’s formulas, various authors have set various assump-
tions. For examples:
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1. In [7],[8], 9], Katsurada, K&jyo and Nagai assumed that the position
vector field X is parallel to the mean curvature vector field H everywhere, and
H is parallel in the normal bundle. In this case, we can choose ¢ in the direc-
tion of H so that X.& = 0 by (7). Thus from (8) it follows that Fi(e) = - - -
= F,(e) = 0 automatically.

2. In [10],[11], Yano assumed that the mean curvature vector field H
is parallel in the pormal bundle and the second fundamental form at
X. — (X,-H)H/(H-H) vanishes. In this case, if we choose e in the direction
of H, then A;;(&) = Oforalli,j =1, - .., n. Thus by (8) we know that F\(e)
= ... = F,(e) = 0 automatically.

Remark 2.3. Let e be a unit normal vector field. If the second mean cur-
vature M,(e) is equal to an ath scalar curvature [3], then e is called a Frenet
direction [3], [5]. From the definition of F,(e) it follows that F,(¢) = O if e is
a Frenet direction. For the integral formulas in the Frent directions see Chen-
Yano [5]. If e is parallel to X, then Fi(e) = ... = F, (e) = 0 automatically.

Remark 2.4. 1In Proposition 2.1, the condition of the parallelism of ¢ in the
normal bundle can be replaced by the condition that M™ is immersed in a
hypersphere of E™ centered at the origin of E™.

Theorem 2.3. Let x: M* — E™ be an immersion of an oriented closed
manifold M* into E™. If e is a unit normal vector field and is parallel in the
normal bundle, and (X -8)A ;, = 0, then we have F(e) = .- - =F,(e) = 0 and

(13) fMi_l(e)dV+f(x-e)Mi(e)dvzo, i=1,.-n,

where A, denotes the second fundamental form at &.

Since (X-&)A; = 0, we have either X.2 = Qor 4,4(é) = 0, for alli,j =
1,...,n. Thus F,(¢) = --. = F,(e) = 0 by (8), and hence we get (13) by
Theorem 2.2.

Remark 2.5. If e is in the direction of the mean curvature vector field H,
then Theorem 2.3 was proved by Yano [10], [11] for i = 2.

Let f be a function on M". By grad f or Ff we mean Ff = 3¥f,e;, where f,
are given by df = Xf,0;.

Theorem 2.4. Let x: M* — E™ be an immersion of an oriented closed
manifold M* into E™. If e is a unit normal vector field over M™, then we have

(14) f X -PMe)dV + n f (Mi(e) + (X-E)M(e)dV =0,

fori=1,...,n, where H denotes the mean curvature vector field.
Proof. Let

(15) ¢c=2(—)Y"'"X-e)oy N\ -+ Nag/N\ -+ N\ oy, .
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Then

(16) dM(€)o) = (M) A o + nMe)(1 + (X-E)dV ,
which together with df A ¢ = (X-FHdV implies

an dMe)a) = (X -TM(e)dV + nM(e)(1 + (X-H))dV .

Hence by integrating both sides of (17) and applying Stokes’ theorem, we get
(14).

Remark 2.6. For the integral formulas for hypersurfaces consisting of
VM (e), see Amur [1] and ‘Chen [2].

3. Some characterizations of spherical submanifolds

The purpose of this section is to use the integral formulas in § 2 to get some
characterizations of spherical submanifolds. The following lemmas are well-
known.

Lemma 3.1. Let M (e),i = 1, -.-,n, be given by (4), and let M(e) = 1.
Then .

(18) Myfe) — M,_(eM;,(e) >0,
fori=1,...,n — 1. Moreover, if M\(e), - - -, M [e) are positive, then
(19 M(e) > (M(e))'* > -+ > (MHe) ,

where the equality at any stage of (18) and (19) implies that M* is umbilical
with respect to e, i.e., k, = ... = k,.
Lemma 3.2. If M,_J(e), M,_;_,(e), - --,M(e) are positive, then

(200 M, (e)/M(e) > M, (e)/M, (&) > - - > M,_;_(e)/M, &),

where the equality at any stage implies that M™ is umbilical with respect to e,
ie,k=... = k,.

If x: M®» - E™ is an immersion of M” into E™ such that M* is immersed
into a hypersphere of E™ centered at ¢, then M™ is called a spherical sub-
manifold of E™, or simply M" is spherical. The radius vector field R is defined
by X —c.

Theorem 3.3. Let x: M* — E™ be an immersion of M* into E™. Then
there exists a normal vector field e = 0 over M* such that (1) e is parallel in
the normal bundle, and (2) M™ is umbilical with respect to e, when and only
when M" is spherical and e is parallel to the radius vector field R.

Proof. Suppose that there exists a normal vector field e = 0 over M* such
that e is parallel in the normal bundle and M™ is umbilical with respect to e.
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Then we can easily verify that e has constant length |e], and therefore we can
choose the first unit normal e, ,, = e/|e| so that

(21) wi’n+1=hwi, i:l,...,n’
(22) wn+1,r:O’ r=n+1,.--,m.

By taking the exterior derivative of (21) and applying (22), we get
dh N\ w; =0, i=1,.--,n,

which imply that % is constant. Now consider the mapping Q: M™ — E™ defined
by Q(p) = x(p) + e,,,/h. Then use of (21) and (22) yields dQ(p) = 0, which
shows that

x(p) + e,../h = ¢ = constant .

Hence M™ is immersed into a hypersphere of E™ centered at ¢, and e is par-
allel to the radius vector field X — c. :

Corollary 3.1. Let x: M™ — E**? be an immersion of M™ into E***. Then
there exists a unit normal vector field e such that M" is umbilical with respect
to e and the first mean curvature M (e) at e is constant when and only when
M~ is spherical and e is parallel to the radius vector field R.

Proof. Suppose that e is a unit normal vector field such that M is um-
bilical with respect to e, and the first mean curvature M,(e) at e is constant.
Then by choosing e, ., = e we have

@i, 1 = M@)o, , i=1,..-.,n.
By taking the exterior derivative of the above equations we get
dM(e) N\ 0y = @y pi2 N\ Ogizn = 0.
Thus
Binez = 0, i=1,.---,n,

on the set U = {pe M"™: w,,, 4., * O at p}. On the open set U, by taking ex-
terior derivative of the above equations, we have

wi/\wn+l,n+2=05 l:'—la"':na

which imply that w, ., ,,, = O on U. Therefore U is an empty set. This shows
that e is parallel in the normal bundle. Hence, by using Theorem 3.3, we know
that M™ is spherical and e is parallel to the radius vector field R.

Throughout the remainder of this paper, we always assume that x: M* — E™
is an immersion of an oriented closed manifold M* into E™,
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Theorem 3.4. If there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 2 < i < n, such that

() Mye) >0,

() X-.e< —M, (e)/Me), (or X-e > —M,_,(e)/Me)),

(i) Fye) = F,_,(e) =0,
then M™ is spherical and the radius vector field R is parallel to e.

Proof. Suppose that there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that (i), (ii) and (iii) hold. Then
by (ii) and Theorem 2.2 we get

X.e= —Mi—l(e)/Mi(e) N
f (M;_(€) + (X-OM;_()dV =0 ,

Me

and threfore

f 1/ MA) M (&) — M, M)AV = O .

M7

Thus by Lemma 3.1 we have M,_(e)’ — M,_,(e)M(e) = 0, and M" is um-
bilical with respect to ¢. Hence Theorem 3.4 follows immediately from Theo-
rem 3.3.

Theorem 3.5. [f there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that

O M;,(e)>0,

(i) X.e> —M, (e)/Mye),

(i) Fy(e) =0,
then M™ is spherial and e is parallel to the radius vector field.

Proof. By (ii) and Lemma 3.2 we have

X.e> —M; (e)[Mfe) > —M(e)[M;,(e) ,

which, together with

f (Me) + (X-M;, ()dV = 0
M
by Theorem 2.2, implies
Xee> —M, ()/Mf&) > —Me)|M, () = X-e .

Therefore M (e)* =M,_(e)M,, (e), and hence by Theorem 3.3, M" is spherical
and e is parallel to the radius vector field.
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Theorem 3.6. If there exist a unit normal vector field e parallel in the
normal bundle and two integers s and i, 1 < i < s < n, such that
(i) Ms(e)7 . '9Mi(e) > 09

s§—-1
(i) My e) = 3] c;M;(e), for some constants c;, i < j < s — 1,
i=1
(111) Fj(e)=05j:i,""s_'la
then M® is spherical and e is parallel to the radius vector field.
Proof. By Lemma 3.2 we have

Mye) _ M, (o) _ ( Me) )(Ms_l(e) B Mj_l(e)) >0
Me) M, (e M, (e) M e Mye | —

fori < j<s—1,sothat
1= Y ;M e)/Me) > ¥ c;M;_(e)[M,_(e) ,
or
M,_(e) — X c;M;_(e) >0,

where equality holds only if M* is umbilical with respect to e. Thus by using
(ii) and Theorem 2.2 we have )

(23) i

- _ f (X-e) (Ms(e) ~ le c,Mj(e))dV =0,

and therefore M,_, = }, ¢;M,_,(e), which implies that M" is umbilical with
respect to e. Hence by Theorem 3.3, M? is spherical and e is parallel to the
radius vector field.
Similarly, by using (23), we have
Theorem 3.7. If there exist a unit vector field e parallel in the normal
bundle and two integers s and i, 0 < i < s < n, such that
(1) Ms+1(e)’ tr Mt+1(e) > 0

i My e = Z c;M [e) for some constants c;, i < j< s — 1,

(i) X e>00rX e<O0,

(iv) F,_.(e) = = F{e) =0,
then M™ is spherical and e is parallel to the radius vector field.

Theovem 3.8. [f there exist a unit normal vector field e parallel in the
normal bundle and an integer i, 1 < i < n, such that
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H Mye) >0,
(i) M) = cM;_e), for a constant c,
(iii) F;_,(e) = F(e) =0,
then M* is spherical and e is parallel to the radius vector field.
Proof. Since M (e) > 0,c cannot be zero and M, _,(e) must be of fixed sign.
By (ii) and Lemma 3.1, we have

Mi—l(e)(Mi-x(e) — CMi_z(e)) = Mi—l(e)z - Mi(e)Mi—z(e) >0,

from which, together with (i) again and Theorem 2.2, it follows

f (M;_(&) — cM,_Je))dV — f (M,_(&) — M)(X-e)dV =0,
M Mn

so that M,_,(e) = cM,_,(e). Thus by Theorem 3.6, M is umbilical with respect
to e, and hence M™ is spherical and e is parallel to the radius vector field.
Theorem 3.9. If there exists a unit normal vector field e parallel in the
normal bundle such that
M M, >0,
(i) the sum of the principal radii of curvature is constant at e, i.e.,

i (1/k,) = constant,
i=1

(i) Fale) = F,_,(e) =0,
then M™ is spherical and e is parallel to the radius vector field.
Proof. Since

24) % (1/k) = nM,_(e)[M,(e) = constant ,

by Theorem 3.8 we know that M® is spherical and e is parallel to the radius
vector field. :

Remark 3.1. If we replace e by a unit vector field parallel to the mean
curvature vector field H, then the conclusion in Theorems 3.3 to 3.9 and
Corollary 3.1 should be read as “M™ is a minimal submanifold of a hypersphere
of E™”, since the only closed submanifolds of a euclidean space such that the
position vector field parailel to the mean curvature vector field H everywhere
are the minimal submanifolds of a hypersphere.

Remark 3.2. If M~ is spherical and e is a unit vector field parallel to the
radius vector field R, then we have (i) e is parallel in the normal bundle, (ii)
M,(e) =constant, foralli=1, ..., n, (ili) R-e = + M (e)/M;_,(e) = constant,
forali=1,-..,n, and (iv) Fe) = --- = F,(e) = 0.

Remark 3.3. If the ambient space is replaced by an m-dimensional
Riemannian space of constant sectional curvature and the position vector field
X replaced by a concurrent vector field over M", then we can get the same
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results for all theorems in §§2 and 3 except the statement “M” is spherical
and e is parallel to the radius vector field” should be replaced by the existence
of a concurrent normal vector field (see Yano-Chen [14]).

Remark 3.4. Let N be a vector field in E™ over M”. If there exist a func-
tion f and a 1-form A such that d(x + fN) = AN, then the vector field N is
called a torse-forming, because if we develop the vector field N along a curve
in the manifold M", we obtain a field of vectors along the curve whose pro-
longations are tangent to another curve. From Theorem 3.3 it follows that a
normal vector field N in E™ over M™ is a concurrent vector field if it is a torse-
forming.
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